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Note 

Solution of the Discrete Poisson Equation 

with Complicated Boundaries 

1. I~~DUCTION 

Very fast exact direct methods now exist for the direct solution of the discrete 
Poisson equation in rectangular [l, 21 or cylindrical domains [3]. For more com- 
plicated domains, Hackney [l] and Buzbee et al. [4] treat the walls as long 
electrodes inside a regular domain and apply the “Capacity Matrix” method. 
If P grid points represent the electrodes on the finite difference grid, one first solves 
for the potential with no charge on these P points. A P-vector is formed with the 
potential missing on the electrodes and multiplied by the P-order capacity matrix 
to obtain the induced charge P-vector. Adding this to the original charge distri- 
bution and solving again gives the desired potential. 

While the method is exact and quite rapid (approximately 28, where 0 is the time 
required for a solution in the simple domain), and the capacity matrix need be com- 
puted only once (it depends only on the position of the electrodes), its calculation 
can be burdensome in the study of large systems or for users of modest computer 
installations: the computing time required is PO [4], and the storage space P2. 

A coarse grid reduces both P and 0 but, in plasma simulations, grid spacings 
much larger than a Debye length are not acceptable [5]. In three-dimensional 
computations, 0 is large and finite area electrodes would also make P large, thus 
precluding the application of the method. 

It is therefore desirable to reduce the value of P, even at some expense in 
accuracy, to get a more manageable capacity matrix. 

Fortunately, examination of the distribution of induced charge along lengthy 
electrodes shows that it varies slowly and smoothly except at the ends. (This is 
less so for electrodes which are oblique with respect to the coordinate axes. This 
particular problem is discussed in Section 3). This suggests the grouping of electrode 
points into clusters, and simply demanding that the aoerage potential on each 
cluster be the electrode potential. The error made is the deviation from the mean 
of the potential on the points in the clusters, and we show how an appropriate 
prescription for computing the induced charge in the clusters can make this 
error extremely small. Numerical results are given for a potential calculation on 
the KEMP-II plasma confinement machine. 
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2. NUMERICAL METHOD 

To simplify, we will consider only one long electrode with P grid points to be 
held at potential t, EL The extension to more than one electrodes is obvious. These . 
P points are grouped into M clusters, each of which includes qm points (TV > 1, 
m = l,..., M). Let I, designate the coordinate of the pth electrode grid-point 
(P = 1,2,..., P) and k, I,,, etc., that of the first, second, etc., point of the mth 
cluster. Only one index indicates the coordinate on a two-dimensional grid: 

I=i+j*NZ. 

As the charge varies rapidly at either end of the electrode, we use one point 
clusters near the ends 

71 = *** = ?)NI = 1; TM-NF+i = "* =r),= 1. (1) 

Usually, NZ and NF are 3 or 4. For the other clusters, qm > 1, usually 2, 3, or 4. 
We must always have 

M 
c %n = p. (2) 

m=1 

We define M basic density distributions which will be used to expand the distri- 
bution of induced charges 

For one-point clusters, we define a distribution which is unity on the one-point 
cluster, and null elsewhere 

wz = bm, 9 l<m<NI or M-NF+l<m<M. (3) 

For the M’ (M’ = M - NI - NF) other clusters, we use polynomials of degree 
(M’ - 1) in xLmk , the projected distance between the beginning of the electrode 
and point Z,, (x~,, = 0) 

(&Jr = 0 if I is a point which is on a one point cluster or is not on the 
electrode, (4) 

= F,(x,) if I = Z,, is a point in a multipoint cluster, 

where 

(5) 
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It may be verified that the induced charge is qm on the first point of cluster m 
and, on the other points, is established by W-pivotal points Lagrangian inter- 
polation [8]. 

The calculation of the capacity matrix now proceeds as follows. 

(a) Compute the “average potentials matrix” D. 

For m = 1, 2 ,..., M, 

(i) solve the Poisson equation with density 6, . 

y,, = L-%%n , (6) 

where L is the finite difference Poisson operator for the simple geometry, and L-l, 
its inverse, refers to the direct solution method; 

(ii) form the average potentials M-vector (averaging on each cluster). 
This vector is the mth row of matrix D 

(b) Invert the M x A4 matrix D to obtain the capacity matrix 

C = D-l. (8) 

The calculation of the potential for a given charge density off the electrodes, 
p”, proceeds as follows. 

(a) Compute the potential with no charge on the electrodes 

40 = L-lp0. (9) 

(b) Form the “missing average potential” IV-vector U 

l.4, = v EL - wh>K~“>t,, + -** + (~“bn%l (m = l,..., A4). (10) 

(c) Multiply this vector by the capacity matrix C to obtain the missing charge 
M-vector Q 

Q = CU. (11) 

(d) Add the induced charge to the given charge distribution 

P = PO + P’ = PO + ; q??An * (12) 
?7&=1 

(e) Solve the Poisson equation with this charge distribution 

4 = L-lp. (13) 
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It can be proved that the potential thus obtained has exactly the correct average 
potential on each cluster 

(14) 

3. OBLIQUE ELECTRODES 

When an oblique electrode is represented on a finite difference grid, it generally 
takes a jagged, staircase-like form and it is found, if the induced charge is calculated 
exactly, that considerably more charge is induced on the corners of the “staircase” 
than on the neighboring points. This is not well approximated by the polynomials 
used to calculate the induced charge, but we have found empirically that this 
difficulty is considerably alleviated by weighing the polynomials with the distance 
between two points; that is, we replace Eq. (4) by 

However, even this weighing does not succeed completely in making the 
clustering approximation equally good for oblique electrodes as compared to 
horizontal or vertical ones. 

4. NUMERICAL TEST 

To test the clustering method, we have applied it to the study of the KEMP-II 
(electrostatic and magnetic confinement) experimental facility (Fig. 1). A potential 
distribution obtained from an iterative equilibrium calculation [6] was used as 
a basis for comparison. The charge distribution was calculated directly by the 
finite difference Poisson equations and input to the direct solution code. Comparison 
of the potential thus obtained with the original potential, near and on the electrodes 
permits an evaluation of the accuracy of the clustering approximation (Table I). 

In this example, a nonuniform grid spacing in the radial direction is used to 
improve resolution near the axis. The potential in the simple half-cylinder is 
obtained from the density by Fourier transformation in the axial direction and 
Gaussian elimination in the radial direction [3, 71. The grid is 64 x 100 cells. 

While the electrodes A and B were treated exactly (7, = l), the walls were 
treated approximately with ym = 3, NI = NF = 4 for all three walls: Wl, W2, 
W3. The 118 points to be held at fixed potential were thus grouped in 69 clusters, 
for a nearly twofold reduction in the computer time necessary to calculate the 
capacity matrix, and a threefold reduction in its storage space. 

The worst error appears on wall W2, as the latter is oblique. 
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The worst error is given, for each wall, in volts and as a percentage of the voltage 
applied on it (6000 volts). The comparisons near the walls are made 2(5) grid 
spacings below Wl and 2(5) grid spacings right of W2 and W3. 
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FIG. 1. Model of the KEMP-II plasma confinement machine 

TABLE I 

Precision of the Algorithm for the KEMP-II Plasma Machine 

Wall 

Worst error Worst errors 
Number of Number of Worst error 2 points from 5 points from 
grid-points clusters on the wall the wall the wall 

P M (vi %) or; %) w; %I 

Wl 40 20 2.5 0.96” 0.34’ 
0.042 % 0.016 % 0.0057 % 

w2 33 17 11.4 5.2 3.5 
0.19 % 0.087 % 0.058 % 

w3 29 16 0.2 0.129 0.15” 
0.0035 % 0.0020 % 0.0025 % 

4 The 5 points below (right of) Wl (W3) closest to W2 were. excluded from this comparison as 
the error there is due to the error on W2, and not to that on Wl (W3). 
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5. CONCLUSION 

The clustering method permits an appreciable reduction in computer time and 
storage space at a small cost in the accuracy of potential calculations. In the case 
outlined above, the worst error on the oblique wall was less than 0.2% and this 
fell off to below 0.1 y0 only two grid spacings away from the wall. The precision 
was five times better on and close to the nonoblique walls. Thus, if one desired 
this much more precision, one would not apply the clustering approximation to 
the oblique wall, which would, however, increase the number of clusters from 69 
to 85. A compromise between accuracy and computer time and space must, as 
usual, be made. 
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